This function calculates the temporal speckle skewness matrix (S). Use as input data a 3D matrix created grouping NTIMES intensity matrices I(k) 1<=k<=NTIMES I(k)=DATA(:,:,k) $MU = \frac{1}{NTIMES} \sum\limits_{k=1}^{NTIMES} I(k) \approx E[I(k)]$ $SIGMA = \sqrt{ \frac{1}{NTIMES} \sum\limits_{k=1}^{NTIMES} (I(k)-MU)^2}$ $S \approx E[\left(\frac{I(k)-MU}{SIGMA}\right)^3]$ The function additionally returns the temporal standard deviation matrix and temporal expected matrix. After starting the main routine just type the following command at the prompt: S = graphskew(DATA); [S D] = graphskew(DATA); [S D E] = graphskew(DATA); Input: DATA is the speckle data pack. Where DATA is a 3D matrix created grouping NTIMES intensity matrices with NLIN lines and NCOL columns. When N=size(DATA), then N(1,1) represents NLIN and N(1,2) represents NCOL and N(1,3) represents NTIMES. SHOW [Optional] If SHOW is equal to string 'off', then the result will not be plotted. Output: K returns the temporal speckle skewness matrix of image Data Pack. D [Optional] returns the temporal standard deviation matrix of image Data Pack. E [Optional] returns the temporal expected matrix of image Data Pack. For help, bug reports and feature suggestions, please visit: http://nongnu.org/bsltl
Package: bsltl