Using the Gustafson-Kessel algorithm, calculate and return the soft partition of a set of unlabeled data points.
Also, if display_intermediate_results is true, display intermediate results after each iteration. Note that because the initial cluster prototypes are randomly selected locations in the ranges determined by the input data, the results of this function are nondeterministic.
The required arguments to gustafson_kessel are:
The third (optional) argument to gustafson_kessel is a vector of cluster volumes. If omitted, a vector of 1’s will be used as the default.
The fourth (optional) argument to gustafson_kessel is a vector consisting of:
The default values are used if any of the four elements of the vector are missing or evaluate to NaN.
The return values are:
Three important matrices used in the calculation are X (the input points to be clustered), V (the cluster centers), and Mu (the membership of each data point in each cluster). Each row of X and V denotes a single point, and Mu(i, j) denotes the membership degree of input point X(j, :) in the cluster having center V(i, :).
X is identical to the required argument input_data; V is identical to the output cluster_centers; and Mu is identical to the output soft_partition.
If n denotes the number of input points and k denotes the number of clusters to be formed, then X, V, and Mu have the dimensions:
1 2 ... #features
1 [ ]
X = input_data = 2 [ ]
... [ ]
n [ ]
1 2 ... #features
1 [ ]
V = cluster_centers = 2 [ ]
... [ ]
k [ ]
1 2 ... n
1 [ ]
Mu = soft_partition = 2 [ ]
... [ ]
k [ ]
See also: fcm, partition_coeff, partition_entropy, xie_beni_index.
The following code
## This demo:
## - classifies a small set of unlabeled data points using
## the Gustafson-Kessel algorithm into two fuzzy clusters
## - plots the input points together with the cluster centers
## - evaluates the quality of the resulting clusters using
## three validity measures: the partition coefficient, the
## partition entropy, and the Xie-Beni validity index
##
## Note: The input_data is taken from Chapter 13, Example 17 in
## Fuzzy Logic: Intelligence, Control and Information, by
## J. Yen and R. Langari, Prentice Hall, 1999, page 381
## (International Edition).
## Use gustafson_kessel to classify the input_data.
input_data = [2 12; 4 9; 7 13; 11 5; 12 7; 14 4];
number_of_clusters = 2;
[cluster_centers, soft_partition, obj_fcn_history] = ...
gustafson_kessel (input_data, number_of_clusters)
## Plot the data points as small blue x's.
figure ('NumberTitle', 'off', 'Name', 'Gustafson-Kessel Demo 1');
for i = 1 : rows (input_data)
plot (input_data(i, 1), input_data(i, 2), 'LineWidth', 2, ...
'marker', 'x', 'color', 'b');
hold on;
endfor
## Plot the cluster centers as larger red *'s.
for i = 1 : number_of_clusters
plot (cluster_centers(i, 1), cluster_centers(i, 2), ...
'LineWidth', 4, 'marker', '*', 'color', 'r');
hold on;
endfor
## Make the figure look a little better:
## - scale and label the axes
## - show gridlines
xlim ([0 15]);
ylim ([0 15]);
xlabel ('Feature 1');
ylabel ('Feature 2');
grid
hold
## Calculate and print the three validity measures.
printf ("Partition Coefficient: %f\n", ...
partition_coeff (soft_partition));
printf ("Partition Entropy (with a = 2): %f\n", ...
partition_entropy (soft_partition, 2));
printf ("Xie-Beni Index: %f\n\n", ...
xie_beni_index (input_data, cluster_centers, ...
soft_partition));
Produces the following output
Iteration count = 1, Objective fcn = 56.699686
Iteration count = 2, Objective fcn = 45.237089
Iteration count = 3, Objective fcn = 38.430648
Iteration count = 4, Objective fcn = 34.623038
Iteration count = 5, Objective fcn = 31.224824
Iteration count = 6, Objective fcn = 28.356924
Iteration count = 7, Objective fcn = 27.395198
Iteration count = 8, Objective fcn = 26.912511
Iteration count = 9, Objective fcn = 26.440829
Iteration count = 10, Objective fcn = 26.048048
Iteration count = 11, Objective fcn = 25.809495
Iteration count = 12, Objective fcn = 25.702798
Iteration count = 13, Objective fcn = 25.663973
Iteration count = 14, Objective fcn = 25.651023
Iteration count = 15, Objective fcn = 25.646767
Iteration count = 16, Objective fcn = 25.645357
Iteration count = 17, Objective fcn = 25.644885
Iteration count = 18, Objective fcn = 25.644726
Iteration count = 19, Objective fcn = 25.644672
Iteration count = 20, Objective fcn = 25.644653
Iteration count = 21, Objective fcn = 25.644647
Iteration count = 22, Objective fcn = 25.644645
Iteration count = 23, Objective fcn = 25.644644
Iteration count = 24, Objective fcn = 25.644644
Iteration count = 25, Objective fcn = 25.644644
Iteration count = 26, Objective fcn = 25.644644
Iteration count = 27, Objective fcn = 25.644644
Iteration count = 28, Objective fcn = 25.644644
Iteration count = 29, Objective fcn = 25.644644
Iteration count = 30, Objective fcn = 25.644644
cluster_centers =
4.2228 11.3276
12.2661 5.3877
soft_partition =
0.934026 0.890524 0.870505 0.023529 0.028088 0.012592
0.065974 0.109476 0.129495 0.976471 0.971912 0.987408
obj_fcn_history =
Columns 1 through 8:
56.700 45.237 38.431 34.623 31.225 28.357 27.395 26.913
Columns 9 through 16:
26.441 26.048 25.809 25.703 25.664 25.651 25.647 25.645
Columns 17 through 24:
25.645 25.645 25.645 25.645 25.645 25.645 25.645 25.645
Columns 25 through 30:
25.645 25.645 25.645 25.645 25.645 25.645
Partition Coefficient: 0.888484
Partition Entropy (with a = 2): 0.308027
Xie-Beni Index: 0.107028
and the following figure
| Figure 1 |
|---|
![]() |
The following code
## This demo:
## - classifies three-dimensional unlabeled data points using
## the Gustafson-Kessel algorithm into three fuzzy clusters
## - plots the input points together with the cluster centers
## - evaluates the quality of the resulting clusters using
## three validity measures: the partition coefficient, the
## partition entropy, and the Xie-Beni validity index
##
## Note: The input_data was selected to form three areas of
## different shapes.
## Use gustafson_kessel to classify the input_data.
input_data = [1 11 5; 1 12 6; 1 13 5; 2 11 7; 2 12 6; 2 13 7;
3 11 6; 3 12 5; 3 13 7; 1 1 10; 1 3 9; 2 2 11;
3 1 9; 3 3 10; 3 5 11; 4 4 9; 4 6 8; 5 5 8; 5 7 9;
6 6 10; 9 10 12; 9 12 13; 9 13 14; 10 9 13; 10 13 12;
11 10 14; 11 12 13; 12 6 12; 12 7 15; 12 9 15;
14 6 14; 14 8 13];
number_of_clusters = 3;
[cluster_centers, soft_partition, obj_fcn_history] = ...
gustafson_kessel (input_data, number_of_clusters, [1 1 1], ...
[NaN NaN NaN 0])
## Plot the data points in two dimensions (using features 1 & 2)
## as small blue x's.
figure ('NumberTitle', 'off', 'Name', 'Gustafson-Kessel Demo 2');
for i = 1 : rows (input_data)
plot (input_data(i, 1), input_data(i, 2), 'LineWidth', 2, ...
'marker', 'x', 'color', 'b');
hold on;
endfor
## Plot the cluster centers in two dimensions
## (using features 1 & 2) as larger red *'s.
for i = 1 : number_of_clusters
plot (cluster_centers(i, 1), cluster_centers(i, 2), ...
'LineWidth', 4, 'marker', '*', 'color', 'r');
hold on;
endfor
## Make the figure look a little better:
## - scale and label the axes
## - show gridlines
xlim ([0 15]);
ylim ([0 15]);
xlabel ('Feature 1');
ylabel ('Feature 2');
grid
## Plot the data points in two dimensions
## (using features 1 & 3) as small blue x's.
figure ('NumberTitle', 'off', 'Name', 'Gustafson-Kessel Demo 2');
for i = 1 : rows (input_data)
plot (input_data(i, 1), input_data(i, 3), 'LineWidth', 2, ...
'marker', 'x', 'color', 'b');
hold on;
endfor
## Plot the cluster centers in two dimensions
## (using features 1 & 3) as larger red *'s.
for i = 1 : number_of_clusters
plot (cluster_centers(i, 1), cluster_centers(i, 3), ...
'LineWidth', 4, 'marker', '*', 'color', 'r');
hold on;
endfor
## Make the figure look a little better:
## - scale and label the axes
## - show gridlines
xlim ([0 15]);
ylim ([0 15]);
xlabel ('Feature 1');
ylabel ('Feature 3');
grid
hold
## Calculate and print the three validity measures.
printf ("Partition Coefficient: %f\n", ...
partition_coeff (soft_partition));
printf ("Partition Entropy (with a = 2): %f\n", ...
partition_entropy (soft_partition, 2));
printf ("Xie-Beni Index: %f\n\n", ...
xie_beni_index (input_data, cluster_centers, ...
soft_partition));
Produces the following output
cluster_centers =
11.1675 9.5123 13.4360
2.0744 11.9210 6.0810
3.2679 3.7416 9.5189
soft_partition =
Columns 1 through 5:
0.011156940 0.007168151 0.009256966 0.013793209 0.000061636
0.969713610 0.983129646 0.980099574 0.961231963 0.999849093
0.019129450 0.009702203 0.010643461 0.024974828 0.000089272
Columns 6 through 10:
0.018522392 0.010694147 0.025263997 0.020998218 0.009263487
0.961740379 0.967527444 0.933398914 0.955321662 0.022954702
0.019737230 0.021778409 0.041337089 0.023680120 0.967781811
Columns 11 through 15:
0.018978727 0.013116906 0.022733658 0.002488192 0.031043587
0.061140856 0.029744554 0.056773300 0.006522152 0.079764432
0.919880417 0.957138541 0.920493042 0.990989656 0.889191981
Columns 16 through 20:
0.004486762 0.029447624 0.026948323 0.033445437 0.054461524
0.013944143 0.149981735 0.096878351 0.143129341 0.127672201
0.981569094 0.820570641 0.876173326 0.823425222 0.817866275
Columns 21 through 25:
0.729602066 0.902079011 0.863380551 0.899998020 0.781772579
0.132307043 0.053108509 0.076957490 0.052617552 0.108651912
0.138090890 0.044812480 0.059661959 0.047384429 0.109575510
Columns 26 through 30:
0.980412577 0.887353560 0.817815530 0.895170165 0.921166920
0.010973086 0.058410139 0.100649182 0.063517883 0.046917106
0.008614337 0.054236301 0.081535289 0.041311952 0.031915974
Columns 31 and 32:
0.931435604 0.874466392
0.042583126 0.072534103
0.025981271 0.052999504
obj_fcn_history =
Columns 1 through 8:
243.86 184.80 158.32 140.91 130.79 125.97 123.46 121.81
Columns 9 through 16:
120.82 120.34 120.15 120.08 120.05 120.04 120.04 120.03
Columns 17 through 24:
120.03 120.03 120.03 120.03 120.03 120.03 120.03 120.03
Columns 25 through 29:
120.03 120.03 120.03 120.03 120.03
Partition Coefficient: 0.841843
Partition Entropy (with a = 2): 0.472418
Xie-Beni Index: 0.192631
and the following figures
| Figure 1 | Figure 2 |
|---|---|
![]() |
![]() |
Package: fuzzy-logic-toolkit