For a given domain x and parameters params (or [a b c d]), return the corresponding y values for the trapezoidal membership function. The argument x must be a real number or a non-empty vector of strictly increasing real numbers, and parameters a, b, c, and d must satisfy the inequalities: a < b <= c < d. None of the parameters a, b, c, d are required to be in the domain x. The minimum and maximum values of the trapezoid are assumed to be 0 and 1.
The parameters [a b c d] correspond to the x values of the corners of the trapezoid:
1-| -------- | / \ | / \ | / \ 0----------------------- a b c d
To run the demonstration code, type demo('trapmf') at the Octave prompt.
See also: dsigmf, gauss2mf, gaussmf, gbellmf, pimf, psigmf, sigmf, smf, trimf, zmf.
The following code
x = 0:100; params = [-1 0 20 40]; y1 = trapmf(x, params); params = [20 40 60 80]; y2 = trapmf(x, params); params = [60 80 100 101]; y3 = trapmf(x, params); figure('NumberTitle', 'off', 'Name', 'trapmf demo'); plot(x, y1, 'r;params = [-1 0 20 40];', 'LineWidth', 2) hold on; plot(x, y2, 'b;params = [20 40 60 80];', 'LineWidth', 2) hold on; plot(x, y3, 'g;params = [60 80 100 101];', 'LineWidth', 2) ylim([-0.1 1.2]); xlabel('Crisp Input Value', 'FontWeight', 'bold'); ylabel('Degree of Membership', 'FontWeight', 'bold'); grid;
Produces the following figure
Figure 1 |
---|
Package: fuzzy-logic-toolkit