Function: dsft
DSFT  Discrete Symplectic Fourier Transform
  Usage:  C=dsft(F);

  DSFT(F) computes the discrete symplectic Fourier transform of F.
  F must be a matrix or a 3D array. If F is a 3D array, the 
  transformation is applied along the first two dimensions.

  Let F be a K xL matrix. Then the DSFT of F is given by

                               L-1 K-1
    C(m+1,n+1) = 1/sqrt(K*L) * sum sum F(k+1,l+1)*exp(2*pi*i(k*n/K-l*m/L))
                               l=0 k=0

  for m=0,...,L-1 and n=0,...,K-1.

  The DSFT is its own inverse.

  References:
    H. G. Feichtinger, M. Hazewinkel, N. Kaiblinger, E. Matusiak, and
    M. Neuhauser. Metaplectic operators on c^n. The Quarterly Journal of
    Mathematics, 59(1):15--28, 2008.
    

Url: http://ltfat.github.io/doc/gabor/dsft.html

Package: ltfat