DSFT Discrete Symplectic Fourier Transform Usage: C=dsft(F); DSFT(F) computes the discrete symplectic Fourier transform of F. F must be a matrix or a 3D array. If F is a 3D array, the transformation is applied along the first two dimensions. Let F be a K xL matrix. Then the DSFT of F is given by L-1 K-1 C(m+1,n+1) = 1/sqrt(K*L) * sum sum F(k+1,l+1)*exp(2*pi*i(k*n/K-l*m/L)) l=0 k=0 for m=0,...,L-1 and n=0,...,K-1. The DSFT is its own inverse. References: H. G. Feichtinger, M. Hazewinkel, N. Kaiblinger, E. Matusiak, and M. Neuhauser. Metaplectic operators on c^n. The Quarterly Journal of Mathematics, 59(1):15--28, 2008.
Package: ltfat