DSFT Discrete Symplectic Fourier Transform
Usage: C=dsft(F);
DSFT(F) computes the discrete symplectic Fourier transform of F.
F must be a matrix or a 3D array. If F is a 3D array, the
transformation is applied along the first two dimensions.
Let F be a K xL matrix. Then the DSFT of F is given by
L-1 K-1
C(m+1,n+1) = 1/sqrt(K*L) * sum sum F(k+1,l+1)*exp(2*pi*i(k*n/K-l*m/L))
l=0 k=0
for m=0,...,L-1 and n=0,...,K-1.
The DSFT is its own inverse.
References:
H. G. Feichtinger, M. Hazewinkel, N. Kaiblinger, E. Matusiak, and
M. Neuhauser. Metaplectic operators on c^n. The Quarterly Journal of
Mathematics, 59(1):15--28, 2008.
Package: ltfat