FRAMEMULEIGS Eigenpairs of frame multiplier
Usage: [V,D]=framemuleigs(Fa,Fs,s,K);
D=framemuleigs(Fa,Fs,s,K,...);
Input parameters:
Fa : Analysis frame
Fs : Synthesis frame
s : Symbol of Gabor multiplier
K : Number of eigenvectors to compute.
Output parameters:
V : Matrix containing eigenvectors.
D : Eigenvalues.
[V,D]=FRAMEMULEIGS(Fa,Fs,s,K) computes the K largest eigenvalues
and eigen-vectors of the frame multiplier with symbol s, analysis
frame Fa and synthesis frame Fs. The eigenvectors are stored as
column vectors in the matrix V and the corresponding eigenvalues in
the vector D.
If K is empty, then all eigenvalues/pairs will be returned.
D=FRAMEMULEIGS(...) computes only the eigenvalues.
FRAMEMULEIGS takes the following parameters at the end of the line of input
arguments:
'tol',t Stop if relative residual error is less than the
specified tolerance. Default is 1e-9
'maxit',n Do at most n iterations.
'iter' Call eigs to use an iterative algorithm.
'full' Call eig to solve the full problem.
'auto' Use the full method for small problems and the
iterative method for larger problems. This is the
default.
'crossover',c
Set the problem size for which the 'auto' method
switches. Default is 200.
'print' Display the progress.
'quiet' Don't print anything, this is the default.
Examples:
---------
The following example calculates and plots the first eigenvector of the
Gabor multiplier given by the BATMASK function. Note that the mask
must be converted to a column vector to work with in this framework:
mask=batmask;
[Fa,Fs]=framepair('dgt','gauss','dual',10,40);
[V,D]=framemuleigs(Fa,Fs,mask(:));
sgram(V(:,1),'dynrange',90);
Url: http://ltfat.github.io/doc/operators/framemuleigs.html
See also: framemul, framemulappr.
Package: ltfat