FRAMEMULEIGS Eigenpairs of frame multiplier Usage: [V,D]=framemuleigs(Fa,Fs,s,K); D=framemuleigs(Fa,Fs,s,K,...); Input parameters: Fa : Analysis frame Fs : Synthesis frame s : Symbol of Gabor multiplier K : Number of eigenvectors to compute. Output parameters: V : Matrix containing eigenvectors. D : Eigenvalues. [V,D]=FRAMEMULEIGS(Fa,Fs,s,K) computes the K largest eigenvalues and eigen-vectors of the frame multiplier with symbol s, analysis frame Fa and synthesis frame Fs. The eigenvectors are stored as column vectors in the matrix V and the corresponding eigenvalues in the vector D. If K is empty, then all eigenvalues/pairs will be returned. D=FRAMEMULEIGS(...) computes only the eigenvalues. FRAMEMULEIGS takes the following parameters at the end of the line of input arguments: 'tol',t Stop if relative residual error is less than the specified tolerance. Default is 1e-9 'maxit',n Do at most n iterations. 'iter' Call eigs to use an iterative algorithm. 'full' Call eig to solve the full problem. 'auto' Use the full method for small problems and the iterative method for larger problems. This is the default. 'crossover',c Set the problem size for which the 'auto' method switches. Default is 200. 'print' Display the progress. 'quiet' Don't print anything, this is the default. Examples: --------- The following example calculates and plots the first eigenvector of the Gabor multiplier given by the BATMASK function. Note that the mask must be converted to a column vector to work with in this framework: mask=batmask; [Fa,Fs]=framepair('dgt','gauss','dual',10,40); [V,D]=framemuleigs(Fa,Fs,mask(:)); sgram(V(:,1),'dynrange',90);
Url: http://ltfat.github.io/doc/operators/framemuleigs.html
See also: framemul, framemulappr.
Package: ltfat