GABDUALNORM Measure of how close a window is to being a dual window
Usage: dn=gabdualnorm(g,gamma,a,M);
dn=gabdualnorm(g,gamma,a,M,L);
dn=gabdualnorm(g,gamma,a,M,'lt',lt);
[scal,res]=gabdualnorm(...);
Input parameters:
gamma : input window..
g : window function.
a : Length of time shift.
M : Number of modulations.
L : Length of transform to consider
Output parameters:
dn : dual norm.
scal : Scaling factor
res : Residual
GABDUALNORM(g,gamma,a,M) calculates how close gamma is to being a
dual window of the Gabor frame with window g and parameters a and M.
The windows g and gamma may be vectors of numerical values, text strings
or cell arrays. See the help of GABWIN for more details.
[scal,res]=GABDUALNORM(...) computes two entities: scal determines
if the windows are scaled correctly, it must be 1 for the windows to be
dual. res is close to zero if the windows (scaled correctly) are dual
windows.
GABDUALNORM(g,gamma,a,M,L) does the same, but considers a transform
length of L.
GABDUALNORM(g,gamma,a,M,'lt',lt) does the same for a non-separable
lattice specified by lt. Please see the help of MATRIX2LATTICETYPE
for a precise description of the parameter lt.
GABDUALNORM can be used to get the maximum relative reconstruction
error when using the two specified windows. Consider the following code
for some signal f, windows g, gamma, parameters a and M and
transform-length L (See help on DGT on how to obtain L*):
fr=idgt(dgt(f,g,a,M),gamma,a);
er=norm(f-fr)/norm(f);
eest=gabdualnorm(g,gamma,a,M,L);
Then er<eest for all possible input signals f.
To get a similar estimate for an almost tight window gt, simply use :
eest=gabdualnorm(gt,gt,a,M,L);
Url: http://ltfat.github.io/doc/gabor/gabdualnorm.html
See also: gabframebounds, dgt.
Package: ltfat