GABMULEIGS Eigenpairs of Gabor multiplier Usage: h=gabmuleigs(K,c,g,a); h=gabmuleigs(K,c,a); h=gabmuleigs(K,c,ga,gs,a); Input parameters: K : Number of eigenvectors to compute. c : symbol of Gabor multiplier g : analysis/synthesis window ga : analysis window gs : synthesis window a : Length of time shift. Output parameters: V : Matrix containing eigenvectors. D : Eigenvalues. GABMULEIGS has been deprecated. Please use construct a frame multiplier and use FRAMEMULEIGS instead. A call to GABMULEIGS(K,c,ga,gs,a) can be replaced by : [Fa,Fs]=framepair('dgt',ga,gs,a,M); [V,D]=framemuleigs(Fa,Fs,s,K); Original help: -------------- GABMULEIGS(K,c,g,a) computes the K largest eigenvalues and eigen- vectors of the Gabor multiplier with symbol c and time shift a. The number of channels is deduced from the size of the symbol c. The window g will be used for both analysis and synthesis. GABMULEIGS(K,c,ga,gs,a) does the same using the window the window ga* for analysis and gs for synthesis. GABMULEIGS(K,c,a) does the same using the a tight Gaussian window of for analysis and synthesis. If K is empty, then all eigenvalues/pairs will be returned. GABMULEIGS takes the following parameters at the end of the line of input arguments: 'tol',t Stop if relative residual error is less than the specified tolerance. Default is 1e-9 'maxit',n Do at most n iterations. 'iter' Call eigs to use an iterative algorithm. 'full' Call eig to sole the full problem. 'auto' Use the full method for small problems and the iterative method for larger problems. This is the default. 'crossover',c Set the problem size for which the 'auto' method switches. Default is 200. 'print' Display the progress. 'quiet' Don't print anything, this is the default.
Url: http://ltfat.github.io/doc/deprecated/gabmuleigs.html
See also: gabmul, dgt, idgt, gabdual, gabtight.
Package: ltfat