GABMULEIGS Eigenpairs of Gabor multiplier
Usage: h=gabmuleigs(K,c,g,a);
h=gabmuleigs(K,c,a);
h=gabmuleigs(K,c,ga,gs,a);
Input parameters:
K : Number of eigenvectors to compute.
c : symbol of Gabor multiplier
g : analysis/synthesis window
ga : analysis window
gs : synthesis window
a : Length of time shift.
Output parameters:
V : Matrix containing eigenvectors.
D : Eigenvalues.
GABMULEIGS has been deprecated. Please use construct a frame multiplier
and use FRAMEMULEIGS instead.
A call to GABMULEIGS(K,c,ga,gs,a) can be replaced by :
[Fa,Fs]=framepair('dgt',ga,gs,a,M);
[V,D]=framemuleigs(Fa,Fs,s,K);
Original help:
--------------
GABMULEIGS(K,c,g,a) computes the K largest eigenvalues and eigen-
vectors of the Gabor multiplier with symbol c and time shift a. The
number of channels is deduced from the size of the symbol c. The
window g will be used for both analysis and synthesis.
GABMULEIGS(K,c,ga,gs,a) does the same using the window the window ga*
for analysis and gs for synthesis.
GABMULEIGS(K,c,a) does the same using the a tight Gaussian window of
for analysis and synthesis.
If K is empty, then all eigenvalues/pairs will be returned.
GABMULEIGS takes the following parameters at the end of the line of input
arguments:
'tol',t Stop if relative residual error is less than the
specified tolerance. Default is 1e-9
'maxit',n Do at most n iterations.
'iter' Call eigs to use an iterative algorithm.
'full' Call eig to sole the full problem.
'auto' Use the full method for small problems and the
iterative method for larger problems. This is the
default.
'crossover',c
Set the problem size for which the 'auto' method
switches. Default is 200.
'print' Display the progress.
'quiet' Don't print anything, this is the default.
Url: http://ltfat.github.io/doc/deprecated/gabmuleigs.html
See also: gabmul, dgt, idgt, gabdual, gabtight.
Package: ltfat