Function: hermbasis
HERMBASIS  Orthonormal basis of discrete Hermite functions
  Usage:  V=hermbasis(L,p);
          V=hermbasis(L);
          [V,D]=hermbasis(...);

  HERMBASIS(L,p) computes an orthonormal basis of discrete Hermite
  functions of length L. The vectors are returned as columns in the
  output. p is the order of approximation used to construct the
  position and difference operator.

  All the vectors in the output are eigenvectors of the discrete Fourier
  transform, and resemble samplings of the continuous Hermite functions
  to some degree (for low orders).

  [V,D]=HERMBASIS(...) also returns the eigenvalues D of the Discrete
  Fourier Transform corresponding to the Hermite functions.

  Examples:
  ---------

  The following plot shows the spectrograms of 4 Hermite functions of
  length 200 with order 1, 10, 100, and 190:

    H=hermbasis(200);
  
    subplot(2,2,1);
    sgram(H(:,1),'nf','tc','lin','nocolorbar'); axis('square');

    subplot(2,2,2);
    sgram(H(:,10),'nf','tc','lin','nocolorbar'); axis('square');
   
    subplot(2,2,3);
    sgram(H(:,100),'nf','tc','lin','nocolorbar'); axis('square');
   
    subplot(2,2,4);
    sgram(H(:,190),'nf','tc','lin','nocolorbar'); axis('square');


  References:
    A. Bultheel and S. Martinez. Computation of the Fractional Fourier
    Transform. Appl. Comput. Harmon. Anal., 16(3):182--202, 2004.
    
    H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay. The Fractional Fourier
    Transform. John Wiley and Sons, 2001.
    

Url: http://ltfat.github.io/doc/fourier/hermbasis.html

See also: dft, pherm.

Package: ltfat