PTPFUN Sampled, periodized totally positive function of finite type Usage: g=ptpfun(L,w) g=ptpfun(L,w,width) Input parameters: L : Window length. w : Vector of reciprocals w_j=1/delta_j in Fourier representation of g* width: Integer stretching factor for the essential support of g Output parameters: g : The periodized totally positive function. PTPFUN(L,w) computes samples of a periodized totally positive function of finite type >=2 with weights w for a system of length L. The Fourier representation of the continuous TP function is given as: m ghat(f) = prod (1+2pijf/w(i))^(-1), i=1 where m=numel(w)>= 2. The samples are obtained by discretizing the Zak transform of the function. w controls the function decay in the time domain. More specifically the function decays as exp(max(w)x) for x->infty and exp(min(w)x) for x->-infty assuming w contains both positive and negative numbers. PTPFUN(L,w,width) additionally stretches the function by a factor of width. References: K. Groechenig and J. Stoeckler. Gabor frames and totally positive functions. Duke Math. J., 162(6):1003--1031, 2013. S. Bannert, K. Groechenig, and J. Stoeckler. Discretized Gabor frames of totally positive functions. Information Theory, IEEE Transactions on, 60(1):159--169, 2014. T. Kloos and J. Stockler. Full length article: Zak transforms and gabor frames of totally positive functions and exponential b-splines. J. Approx. Theory, 184:209--237, Aug. 2014. [1]http ] T. Kloos. Gabor frames total-positiver funktionen endlicher ordnung. Master's thesis, University of Dortmund, Dortmund, Germany, 2012. References 1. http://dx.doi.org/10.1016/j.jat.2014.05.010
Url: http://ltfat.github.io/doc/fourier/ptpfun.html
See also: dgt, ptpfundual, gabdualnorm, normalize.
Package: ltfat