Function: ptpfun
PTPFUN Sampled, periodized totally positive function of finite type
  Usage: g=ptpfun(L,w)
         g=ptpfun(L,w,width)

  Input parameters:
        L    : Window length.
        w    : Vector of reciprocals w_j=1/delta_j in Fourier representation of g*
        width: Integer stretching factor for the essential support of g 

  Output parameters:
        g    : The periodized totally positive function.

  PTPFUN(L,w) computes samples of a periodized totally positive
  function of finite type >=2 with weights w for a system of length L.
  The Fourier representation of the continuous TP function is given as:

                 m
     ghat(f) = prod (1+2pijf/w(i))^(-1),
                i=1

  where m=numel(w)>= 2. The samples are obtained by discretizing
  the Zak transform of the function.

  w controls the function decay in the time domain. More specifically
  the function decays as exp(max(w)x) for x->infty and exp(min(w)x)
  for x->-infty assuming w contains both positive and negative
  numbers.

  PTPFUN(L,w,width) additionally stretches the function by a factor of 
  width.


  References:
    K. Groechenig and J. Stoeckler. Gabor frames and totally positive
    functions. Duke Math. J., 162(6):1003--1031, 2013.
    
    S. Bannert, K. Groechenig, and J. Stoeckler. Discretized Gabor frames of
    totally positive functions. Information Theory, IEEE Transactions on,
    60(1):159--169, 2014.
    
    T. Kloos and J. Stockler. Full length article: Zak transforms and gabor
    frames of totally positive functions and exponential b-splines. J.
    Approx. Theory, 184:209--237, Aug. 2014. [1]http ]
    
    T. Kloos. Gabor frames total-positiver funktionen endlicher ordnung.
    Master's thesis, University of Dortmund, Dortmund, Germany, 2012.
    
    References
    
    1. http://dx.doi.org/10.1016/j.jat.2014.05.010
    

Url: http://ltfat.github.io/doc/fourier/ptpfun.html

See also: dgt, ptpfundual, gabdualnorm, normalize.

Package: ltfat