ZAK Zak transform
Usage: c=zak(f,a);
ZAK(f,a) computes the Zak transform of f with parameter a. The
coefficients are arranged in an a xL/a matrix, where L is the
length of f.
If f is a matrix then the transformation is applied to each column.
This is then indexed by the third dimension of the output.
Assume that c=zak(f,a), where f is a column vector of length L and
N=L/a. Then the following holds for m=0,...,a-1 and n=0,...,N-1
N-1
c(m+1,n+1)=1/sqrt(N)*sum f(m-k*a+1)*exp(2*pi*i*n*k/N)
k=0
Examples:
---------
This figure shows the absolute value of the Zak-transform of a Gaussian.
Notice that the Zak-transform is 0 in only a single point right in the
middle of the plot :
a=64;
L=a^2;
g=pgauss(L);
zg=zak(g,a);
surf(abs(zg));
This figure shows the absolute value of the Zak-transform of a 4th order
Hermite function. Notice how the Zak transform of the Hermite functions
is zero on a circle centered on the corner :
a=64;
L=a^2;
g=pherm(L,4);
zg=zak(g,a);
surf(abs(zg));
References:
A. J. E. M. Janssen. Duality and biorthogonality for discrete-time
Weyl-Heisenberg frames. Unclassified report, Philips Electronics,
002/94.
H. Boelcskei and F. Hlawatsch. Discrete Zak transforms, polyphase
transforms, and applications. IEEE Trans. Signal Process.,
45(4):851--866, april 1997.
Url: http://ltfat.github.io/doc/gabor/zak.html
See also: izak.
Package: ltfat