ZAK Zak transform Usage: c=zak(f,a); ZAK(f,a) computes the Zak transform of f with parameter a. The coefficients are arranged in an a xL/a matrix, where L is the length of f. If f is a matrix then the transformation is applied to each column. This is then indexed by the third dimension of the output. Assume that c=zak(f,a), where f is a column vector of length L and N=L/a. Then the following holds for m=0,...,a-1 and n=0,...,N-1 N-1 c(m+1,n+1)=1/sqrt(N)*sum f(m-k*a+1)*exp(2*pi*i*n*k/N) k=0 Examples: --------- This figure shows the absolute value of the Zak-transform of a Gaussian. Notice that the Zak-transform is 0 in only a single point right in the middle of the plot : a=64; L=a^2; g=pgauss(L); zg=zak(g,a); surf(abs(zg)); This figure shows the absolute value of the Zak-transform of a 4th order Hermite function. Notice how the Zak transform of the Hermite functions is zero on a circle centered on the corner : a=64; L=a^2; g=pherm(L,4); zg=zak(g,a); surf(abs(zg)); References: A. J. E. M. Janssen. Duality and biorthogonality for discrete-time Weyl-Heisenberg frames. Unclassified report, Philips Electronics, 002/94. H. Boelcskei and F. Hlawatsch. Discrete Zak transforms, polyphase transforms, and applications. IEEE Trans. Signal Process., 45(4):851--866, april 1997.
Url: http://ltfat.github.io/doc/gabor/zak.html
See also: izak.
Package: ltfat