Compute the affine transform that best register two point sets.
TRANSFO = fitAffineTransform2d(REF, SRC)
Returns the affine transform matrix that minimizes the distance between
the reference point set REF and the point set SRC after transformation.
Both REF and SRC must by N-by-2 arrays with the same number of rows,
and the points must be in correspondence.
The function minimizes the sum of the squared distances:
CRIT = sum(distancePoints(REF, transformPoint(PTS, TRANSFO)).^2);
Example
% computes the transform the register two ellipses
% create the reference poitn set
elli = [50 50 40 20 30];
poly = resamplePolygonByLength(ellipseToPolygon(elli, 200), 5);
figure; axis equal; axis([0 100 0 100]); hold on;
drawPoint(poly, 'kx')
% create the point set to fit on the reference
trans0 = createRotation([20 60], -pi/8);
poly2 = transformPoint(poly, trans0);
poly2 = poly2 + randn(size(poly)) * 2;
drawPoint(poly2, 'b+');
% compute the transform that project poly2 onto poly.
transfo = fitAffineTransform2d(poly, poly2);
poly2t = transformPoint(poly2, transfo);
drawPoint(poly2t, 'mo')
legend('Reference', 'Initial', 'Transformed');
See also
transforms2d, transformPoint, transformVector,
fitPolynomialTransform2d, registerICP, fitAffineTransform3d
Package: matgeom