Compute the affine transform that best register two point sets. TRANSFO = fitAffineTransform2d(REF, SRC) Returns the affine transform matrix that minimizes the distance between the reference point set REF and the point set SRC after transformation. Both REF and SRC must by N-by-2 arrays with the same number of rows, and the points must be in correspondence. The function minimizes the sum of the squared distances: CRIT = sum(distancePoints(REF, transformPoint(PTS, TRANSFO)).^2); Example % computes the transform the register two ellipses % create the reference poitn set elli = [50 50 40 20 30]; poly = resamplePolygonByLength(ellipseToPolygon(elli, 200), 5); figure; axis equal; axis([0 100 0 100]); hold on; drawPoint(poly, 'kx') % create the point set to fit on the reference trans0 = createRotation([20 60], -pi/8); poly2 = transformPoint(poly, trans0); poly2 = poly2 + randn(size(poly)) * 2; drawPoint(poly2, 'b+'); % compute the transform that project poly2 onto poly. transfo = fitAffineTransform2d(poly, poly2); poly2t = transformPoint(poly2, transfo); drawPoint(poly2t, 'mo') legend('Reference', 'Initial', 'Transformed'); See also transforms2d, transformPoint, transformVector, fitPolynomialTransform2d, registerICP, fitAffineTransform3d
Package: matgeom