Compute the rank of matrix A, using the singular value decomposition.
The rank is taken to be the number of singular values of A that are greater than the specified tolerance tol. If the second argument is omitted, it is taken to be
tol = max (size (A)) * sigma(1) * eps;
where eps
is machine precision and sigma(1)
is the largest
singular value of A.
The rank of a matrix is the number of linearly independent rows or columns
and determines how many particular solutions exist to a system of equations.
Use null
for finding the remaining homogenous solutions.
Example:
x = [1 2 3 4 5 6 7 8 9]; rank (x) ⇒ 2
The number of linearly independent rows is only 2 because the final row is a linear combination of -1*row1 + 2*row2.
See also: null, sprank, svd.
Package: octave