Function File: M = mueller_homogeneous_elliptic_retarder()
Function File: M = mueller_homogeneous_elliptic_retarder(t0, delay, azimuth, ellipticity)
Function File: M = mueller_homogeneous_elliptic_retarder(..., delaymode)
Function File: M = mueller_homogeneous_elliptic_retarder(..., delaymode, azimuthmode)

Return the Mueller matrix for a homogeneous elliptic retarder (see references).

  • - t0 is the total transmission (default: 1).
  • - delay is the retardation delay (default: 0).
  • - azimuth and ellipticity (default: 0) describe the two orthogonal polarization eigenstates.
  • - delaymode is a string defining the interpretation of the retardation delay: ’radiants’ (default) or ’degree’ or ’wavelength’.
  • - azimuthmode is a string defining the interpretation of the azimuth angle: ’radiants’ (default) or ’degree’.

Arguments t0, delay, azimuth, or ellipticity can be passed as a scalar or as a matrix or as a cell array. In the two latter cases, a cell array M of Mueller matrices is returned. The size of M is given by max(size(t0),size(delay),size(azimuth),size(ellipticity)) and elements of smaller matrices of t0, delay, azimuth or ellipticity are used in a loop-over manner.

References:

  1. E. Collett, Field Guide to Polarization, SPIE Field Guides vol. FG05, SPIE (2005). ISBN 0-8194-5868-6.
  2. R. A. Chipman, "Polarimetry," chapter 22 in Handbook of Optics II, 2nd Ed, M. Bass, editor in chief (McGraw-Hill, New York, 1995)
  3. "Mueller calculus", last retrieved on Dec 17, 2013.
  4. Boulvert et al., "Decomposition algorithm of an experimental Mueller matrix", Opt.Comm. 282(2009):692-704

See also: mueller_homogeneous_elliptic_diattenuator.

Package: optics