[x,s] = wsolve(A,y,dy)

 Solve a potentially over-determined system with uncertainty in
 the values. 

     A x = y +/- dy

 Use QR decomposition for increased accuracy.  Estimate the 
 uncertainty for the solution from the scatter in the data.

 The returned structure s contains

    normr = sqrt( A x - y ), weighted by dy
    R such that R'R = A'A
    df = n-p, n = rows of A, p = columns of A

 See polyconf for details on how to use s to compute dy.
 The covariance matrix is inv(R'*R).  If you know that the
 parameters are independent, then uncertainty is given by
 the diagonal of the covariance matrix, or 

    dx = sqrt(N*sumsq(inv(s.R'))')

 where N = normr^2/df, or N = 1 if df = 0.

 Example 1: weighted system

    A=[1,2,3;2,1,3;1,1,1]; xin=[1;2;3]; 
    dy=[0.2;0.01;0.1]; y=A*xin+randn(size(dy)).*dy;
    [x,s] = wsolve(A,y,dy);
    dx = sqrt(sumsq(inv(s.R'))');
    res = [xin, x, dx]

 Example 2: weighted overdetermined system  y = x1 + 2*x2 + 3*x3 + e

    A = fullfact([3,3,3]); xin=[1;2;3];
    y = A*xin; dy = rand(size(y))/50; y+=dy.*randn(size(y));
    [x,s] = wsolve(A,y,dy);
    dx = s.normr*sqrt(sumsq(inv(s.R'))'/s.df);
    res = [xin, x, dx]

 Note there is a counter-intuitive result that scaling the
 uncertainty in the data does not affect the uncertainty in
 the fit.  Indeed, if you perform a monte carlo simulation
 with x,y datasets selected from a normal distribution centered
 on y with width 10*dy instead of dy you will see that the
 variance in the parameters indeed increases by a factor of 100.
 However, if the error bars really do increase by a factor of 10
 you should expect a corresponding increase in the scatter of 
 the data, which will increase the variance computed by the fit.

Package: optim