Function File: [B,A] = invfreqs(H,F,nB,nA)
: [B,A] = invfreqs(H,F,nB,nA,W)
: [B,A] = invfreqs(H,F,nB,nA,W,iter,tol,'trace')

Fit filter B(s)/A(s)to the complex frequency response H at frequency points F.

A and B are real polynomial coefficients of order nA and nB.

Optionally, the fit-errors can be weighted vs frequency according to the weights W.

Note: all the guts are in invfreq.m

H: desired complex frequency response

F: frequency (must be same length as H)

nA: order of the denominator polynomial A

nB: order of the numerator polynomial B

W: vector of weights (must be same length as F)

Example:

      B = [1/2 1];
      A = [1 1];
      w = linspace(0,4,128);
      H = freqs(B,A,w);
      [Bh,Ah] = invfreqs(H,w,1,1);
      Hh = freqs(Bh,Ah,w);
      plot(w,[abs(H);abs(Hh)])
      legend('Original','Measured');
      err = norm(H-Hh);
      disp(sprintf('L2 norm of frequency response error = %f',err));

Demonstration 1

The following code

 B = [1/2 1];
 B = [1 0 0];
 A = [1 1];
 ##A = [1 36 630 6930 51975 270270 945945 2027025 2027025]/2027025;
 A = [1 21 210 1260 4725 10395 10395]/10395;
 A = [1 6 15 15]/15;
 w = linspace(0, 8, 128);
 H0 = freqs(B, A, w);
 Nn = (randn(size(w))+j*randn(size(w)))/sqrt(2);
 order = length(A) - 1;
 [Bh, Ah, Sig0] = invfreqs(H0, w, [length(B)-1 2], length(A)-1);
 Hh = freqs(Bh,Ah,w);
 [BLS, ALS, SigLS] = invfreqs(H0+1e-5*Nn, w, [2 2], order, [], [], [], [], "method", "LS");
 HLS = freqs(BLS, ALS, w);
 [BTLS, ATLS, SigTLS] = invfreqs(H0+1e-5*Nn, w, [2 2], order, [], [], [], [], "method", "TLS");
 HTLS = freqs(BTLS, ATLS, w);
 [BMLS, AMLS, SigMLS] = invfreqs(H0+1e-5*Nn, w, [2 2], order, [], [], [], [], "method", "QR");
 HMLS = freqs(BMLS, AMLS, w);
 plot(w,[abs(H0); abs(Hh)])
 xlabel("Frequency (rad/sec)");
 ylabel("Magnitude");
 legend('Original','Measured');
 err = norm(H0-Hh);
 disp(sprintf('L2 norm of frequency response error = %f',err));

Produces the following output

L2 norm of frequency response error = 26.323872

and the following figure

Figure 1

Package: signal