(m)
¶Return the filter coefficients of a triangular window of length m.
Unlike the Bartlett window, triang
does not go to zero at the edges
of the window. For odd m, triang (m)
is equal to
bartlett (m + 2)
except for the zeros at the edges of the
window.
See also: bartlett.
The following code
subplot(221); n=7; k=(n-1)/2; t=[-k:0.1:k]/(k+1); plot(t,1-abs(t),";continuous;",[-k:k]/(k+1),triang(n),"g*;discrete;"); axis([-1, 1, 0, 1.3]); grid("on"); title("comparison with continuous for odd n"); subplot(222); n=8; k=(n-1)/2; t=[-k:0.1:k]/(k+1/2); plot(t,1+1/n-abs(t),";continuous;",[-k:k]/(k+1/2),triang(n),"g*;discrete;"); axis([-1, 1, 0, 1.3]); grid("on"); title("note the higher peak for even n"); subplot(223); n=7; plot(0:n+1,bartlett(n+2),"g-*;bartlett;",triang(n),"r-+;triang;"); axis; grid("off"); title("n odd, triang(n)==bartlett(n+2)"); subplot(224); n=8; plot(0:n+1,bartlett(n+2),"g-*;bartlett;",triang(n),"r-+;triang;"); axis; grid("off"); title("n even, triang(n)!=bartlett(n+2)");
Produces the following figure
Figure 1 |
---|
Package: signal