Plot a column vector data on a Weibull probability plot using rank regression.
censor: optional parameter is a column vector of same size as data with 1 for right censored data and 0 for exact observation. Pass [] when no censor data are available.
freq: optional vector same size as data with the number of occurences for corresponding data. Pass [] when no frequency data are available.
confint: optional confidence limits for ploting upper and lower confidence bands using beta binomial confidence bounds. If a single value is given this will be used such as LOW = a and HIGH = 1 - a. Pass [] if confidence bounds is not requested.
fancygrid: optional parameter which if set to anything but 1 will turn of the the fancy gridlines.
showlegend: optional parameter that when set to zero(0) turns off the legend.
If one output argument is given, a handle for the data marker and plotlines are returned which can be used for further modification of line and marker style.
If a second output argument is specified, a param vector with scale, shape and correlation factor is returned.
See also: normplot, wblpdf.
The following code
x=[16 34 53 75 93 120]; wblplot(x);
Produces the following figure
Figure 1 |
---|
The following code
x=[2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67]'; c=[0 1 0 1 0 1 1 1 0 0 1 0 1 0 1 1 0 1 1]'; [h p]=wblplot(x,c)
Produces the following output
h = -176.83 -175.75 p = 82.0192 0.8951 0.9896
and the following figure
Figure 1 |
---|
The following code
x=[16, 34, 53, 75, 93, 120, 150, 191, 240 ,339]; [h p]=wblplot(x,[],[],0.05) ## Benchmark Reliasoft eta = 146.2545 beta 1.1973 rho = 0.9999
Produces the following output
h = -176.30 -175.19 -174.49 -173.65 p = 146.2545 1.1973 0.9999
and the following figure
Figure 1 |
---|
The following code
x=[46 64 83 105 123 150 150]; c=[0 0 0 0 0 0 1]; f=[1 1 1 1 1 1 4]; wblplot(x,c,f,0.05);
Produces the following figure
h = -176.30 -175.19 -174.49 -173.65 p = 146.2545 1.1973 0.9999
and the following figure
Figure 1 |
---|
The following code
x=[46 64 83 105 123 150 150]; c=[0 0 0 0 0 0 1]; f=[1 1 1 1 1 1 4]; ## Subtract 30.92 from x to simulate a 3 parameter wbl with gamma = 30.92 wblplot(x-30.92,c,f,0.05);
Produces the following figure
h = -176.30 -175.19 -174.49 -173.65 p = 146.2545 1.1973 0.9999
and the following figure
Figure 1 |
---|
Package: statistics