STK_DISTRIB_NORMAL_EI computes the normal (Gaussian) expected improvement
CALL: EI = stk_distrib_normal_ei (Z)
computes the expected improvement of a standard normal (Gaussian)
random variable above the threshold Z.
CALL: EI = stk_distrib_normal_ei (Z, MU, SIGMA)
computes the expected improvement of a Gaussian random variable
with mean MU and standard deviation SIGMA, above the threshold Z.
CALL: EI = stk_distrib_normal_ei (Z, MU, SIGMA, MINIMIZE)
computes the expected improvement of a Gaussian random variable
with mean MU and standard deviation SIGMA, below the threshold Z
if MINIMIZE is true, above the threshold Z otherwise.
NOTE
Starting with STK 2.4.1, it is recommended to use stk_sampcrit_ei_eval
instead of this function. Be careful, however, with the "direction" of
the improvement that you want to compute:
EI = stk_sampcrit_ei_eval (MU, SIGMA, Z)
computes the expected improvement *below* the threshold Z, and is thus
equivalent to
EI = stk_distrib_normal_ei (Z, MU, SIGMA, true)
To compute the expected improvement *above* Z, change signs as follows:
EI = stk_sampcrit_ei_eval (-MU, SIGMA, -Z)
REFERENCES
[1] D. R. Jones, M. Schonlau and William J. Welch. Efficient global
optimization of expensive black-box functions. Journal of Global
Optimization, 13(4):455-492, 1998.
[2] J. Mockus, V. Tiesis and A. Zilinskas. The application of Bayesian
methods for seeking the extremum. In L.C.W. Dixon and G.P. Szego,
editors, Towards Global Optimization, volume 2, pages 117-129, North
Holland, New York, 1978.
See also stk_sampcrit_ei_eval, stk_distrib_student_ei
Package: stk