Method on @sym: chebyshevT (n, x)

Find the nth symbolic Chebyshev polynomial of the first kind.

If n is a vector then it returns a vector with Chebyshev polynomials of the first kind for each element of n.

Examples:

syms x
chebyshevT(1, x)
  ⇒ (sym) x
chebyshevT(2, x)
  ⇒ (sym)
         2
      2⋅x  - 1
syms n
chebyshevT(n, x)
  ⇒ (sym) chebyshevt(n, x)

The inputs can be vectors, for example:

syms x
chebyshevT([0 1 2], x)
  ⇒ (sym 1×3 matrix)
      ⎡         2    ⎤
      ⎣1  x  2⋅x  - 1⎦

See also: @sym/chebyshevU, @double/chebyshevT.

Package: symbolic