@sym
: L =
chol (A)
¶Cholesky factorization of symbolic symmetric matrix.
Returns a lower-triangular matrix L, such that L*L'
is matrix A. The matrix A must be symmetric
positive-definite. Example:
A = sym([1 2 4; 2 13 23; 4 23 43]) ⇒ A = (sym 3×3 matrix) ⎡1 2 4 ⎤ ⎢ ⎥ ⎢2 13 23⎥ ⎢ ⎥ ⎣4 23 43⎦ L = chol(A) ⇒ L = (sym 3×3 matrix) ⎡1 0 0 ⎤ ⎢ ⎥ ⎢2 3 0 ⎥ ⎢ ⎥ ⎣4 5 √2⎦ L*L' ⇒ (sym 3×3 matrix) ⎡1 2 4 ⎤ ⎢ ⎥ ⎢2 13 23⎥ ⎢ ⎥ ⎣4 23 43⎦
See also: chol, @sym/qr, @sym/lu.
Package: symbolic