@sym: L = chol (A) ¶Cholesky factorization of symbolic symmetric matrix.
Returns a lower-triangular matrix L, such that L*L'
is matrix A. The matrix A must be symmetric
positive-definite. Example:
A = sym([1 2 4; 2 13 23; 4 23 43])
⇒ A = (sym 3×3 matrix)
⎡1 2 4 ⎤
⎢ ⎥
⎢2 13 23⎥
⎢ ⎥
⎣4 23 43⎦
L = chol(A)
⇒ L = (sym 3×3 matrix)
⎡1 0 0 ⎤
⎢ ⎥
⎢2 3 0 ⎥
⎢ ⎥
⎣4 5 √2⎦
L*L'
⇒ (sym 3×3 matrix)
⎡1 2 4 ⎤
⎢ ⎥
⎢2 13 23⎥
⎢ ⎥
⎣4 23 43⎦
See also: chol, @@sym/qr, @@sym/lu.
Package: symbolic