@sym
: curl (F) ¶@sym
: curl (F, x) ¶Symbolic curl of symbolic expression.
Consider a vector expression F:
syms f(x,y,z) g(x,y,z) h(x,y,z) F = [f; g; h] ⇒ F = (sym 3×1 matrix) ⎡f(x, y, z)⎤ ⎢ ⎥ ⎢g(x, y, z)⎥ ⎢ ⎥ ⎣h(x, y, z)⎦
The curl of F is the vector expression:
curl(F) ⇒ (sym 3×1 matrix) ⎡ ∂ ∂ ⎤ ⎢- ──(g(x, y, z)) + ──(h(x, y, z))⎥ ⎢ ∂z ∂y ⎥ ⎢ ⎥ ⎢ ∂ ∂ ⎥ ⎢ ──(f(x, y, z)) - ──(h(x, y, z)) ⎥ ⎢ ∂z ∂x ⎥ ⎢ ⎥ ⎢ ∂ ∂ ⎥ ⎢- ──(f(x, y, z)) + ──(g(x, y, z))⎥ ⎣ ∂y ∂x ⎦
F and x should be vectors of length three.
If omitted, x is determined using symvar
.
Example:
syms x y z F = [y -x 0]; curl(F, {x y z}) ⇒ (sym 3×1 matrix) ⎡0 ⎤ ⎢ ⎥ ⎢0 ⎥ ⎢ ⎥ ⎣-2⎦
Example verifying an identity:
syms f(x, y, z) curl(gradient(f)) ⇒ (sym 3×1 matrix) ⎡0⎤ ⎢ ⎥ ⎢0⎥ ⎢ ⎥ ⎣0⎦
Note: assumes x is a Cartesian coordinate system.
See also: @sym/divergence, @sym/gradient, @sym/laplacian, @sym/jacobian, @sym/hessian.
Package: symbolic