@sym: curl (F) ¶@sym: curl (F, x) ¶Symbolic curl of symbolic expression.
Consider a vector expression F:
syms f(x,y,z) g(x,y,z) h(x,y,z)
F = [f; g; h]
⇒ F = (sym 3×1 matrix)
⎡f(x, y, z)⎤
⎢ ⎥
⎢g(x, y, z)⎥
⎢ ⎥
⎣h(x, y, z)⎦
The curl of F is the vector expression:
curl(F)
⇒ (sym 3×1 matrix)
⎡ ∂ ∂ ⎤
⎢- ──(g(x, y, z)) + ──(h(x, y, z))⎥
⎢ ∂z ∂y ⎥
⎢ ⎥
⎢ ∂ ∂ ⎥
⎢ ──(f(x, y, z)) - ──(h(x, y, z)) ⎥
⎢ ∂z ∂x ⎥
⎢ ⎥
⎢ ∂ ∂ ⎥
⎢- ──(f(x, y, z)) + ──(g(x, y, z))⎥
⎣ ∂y ∂x ⎦
F and x should be vectors of length three.
If omitted, x is determined using symvar.
Example:
syms x y z
F = [y -x 0];
curl(F, {x y z})
⇒ (sym 3×1 matrix)
⎡0 ⎤
⎢ ⎥
⎢0 ⎥
⎢ ⎥
⎣-2⎦
Example verifying an identity:
syms f(x, y, z)
curl(gradient(f))
⇒ (sym 3×1 matrix)
⎡0⎤
⎢ ⎥
⎢0⎥
⎢ ⎥
⎣0⎦
Note: assumes x is a Cartesian coordinate system.
See also: @@sym/divergence, @@sym/gradient, @@sym/laplacian, @@sym/jacobian, @@sym/hessian.
Package: symbolic