@sym
: divergence (F) ¶@sym
: divergence (F, x) ¶Symbolic divergence of symbolic expression.
Consider a vector expression F:
syms f_1(x,y,z) f_2(x,y,z) f_3(x,y,z) F = [f_1; f_2; f_3] ⇒ F = (sym 3×1 matrix) ⎡f₁(x, y, z)⎤ ⎢ ⎥ ⎢f₂(x, y, z)⎥ ⎢ ⎥ ⎣f₃(x, y, z)⎦
The divergence of F is the scalar expression:
divergence(F) ⇒ (sym) ∂ ∂ ∂ ──(f₁(x, y, z)) + ──(f₂(x, y, z)) + ──(f₃(x, y, z)) ∂x ∂y ∂z
Examples:
syms x y F = [x^2/2 y^2/2]; divergence(F) ⇒ (sym) x + y
syms z F = [y x x*y]; divergence(F, [x; y; z]) ⇒ (sym) 0
Note: assumes x is a Cartesian coordinate system.
See also: @sym/gradient, @sym/curl, @sym/laplacian, @sym/jacobian, @sym/hessian.
Package: symbolic