@sym: divergence (F) ¶@sym: divergence (F, x) ¶Symbolic divergence of symbolic expression.
Consider a vector expression F:
syms f_1(x,y,z) f_2(x,y,z) f_3(x,y,z)
F = [f_1; f_2; f_3]
⇒ F = (sym 3×1 matrix)
⎡f₁(x, y, z)⎤
⎢ ⎥
⎢f₂(x, y, z)⎥
⎢ ⎥
⎣f₃(x, y, z)⎦
The divergence of F is the scalar expression:
divergence(F)
⇒ (sym)
∂ ∂ ∂
──(f₁(x, y, z)) + ──(f₂(x, y, z)) + ──(f₃(x, y, z))
∂x ∂y ∂z
Examples:
syms x y F = [x^2/2 y^2/2]; divergence(F) ⇒ (sym) x + y
syms z F = [y x x*y]; divergence(F, [x; y; z]) ⇒ (sym) 0
Note: assumes x is a Cartesian coordinate system.
See also: @@sym/gradient, @@sym/curl, @@sym/laplacian, @@sym/jacobian, @@sym/hessian.
Package: symbolic