@sym: Lambda = eig (A) ¶@sym: [V, D] = eig (A) ¶Symbolic eigenvalues/eigenvectors of a matrix.
Example:
A = sym([2 4; 6 8]);
sort(eig(A))
⇒ ans = (sym 2×1 matrix)
⎡5 - √33⎤
⎢ ⎥
⎣5 + √33⎦
We can also compute the eigenvectors:
[V, D] = eig(A)
⇒ V = (sym 2×2 matrix)
⎡ √33 1 1 √33⎤
⎢- ─── - ─ - ─ + ───⎥
⎢ 6 2 2 6 ⎥
⎢ ⎥
⎣ 1 1 ⎦
⇒ D = (sym 2×2 matrix)
⎡5 - √33 0 ⎤
⎢ ⎥
⎣ 0 5 + √33⎦
The eigenvectors are the columns of V; we can extract one and check:
v = V(:, 1)
⇒ v = (sym 2×1 matrix)
⎡ √33 1⎤
⎢- ─── - ─⎥
⎢ 6 2⎥
⎢ ⎥
⎣ 1 ⎦
lambda = D(1,1)
⇒ lambda = (sym) 5 - √33
simplify(A*v - lambda*v)
⇒ ans = (sym 2×1 matrix)
⎡0⎤
⎢ ⎥
⎣0⎦
Note: the generalized eigenvalue problem is not yet supported.
See also: @@sym/svd.
Package: symbolic