@sym: expint (x) ¶@sym: expint (n, x) ¶Symbolic generalized exponential integral (expint) function.
Integral definition:
syms x
E1 = expint (x)
⇒ E1 = (sym) E₁(x)
rewrite (E1, 'Integral')
⇒ (sym)
∞
⌠
⎮ -t⋅x
⎮ ℯ
⎮ ───── dt
⎮ t
⌡
1
This can also be written (using the substitution u = t⋅x) as:
∞
⌠
⎮ -u
⎮ ℯ
⎮ ─── du
⎮ u
⌡
x
With two arguments, we have:
E2 = expint(2, x) ⇒ E2 = (sym) E₂(x)
In general:
syms n x
En = expint(n, x)
⇒ En = (sym) Eₙ(x)
rewrite (En, 'Integral')
⇒ (sym)
∞
⌠
⎮ -n -t⋅x
⎮ t ⋅ℯ dt
⌡
1
Other example:
syms n x En = expint(n, x); diff(En, x) ⇒ (sym) -expint(n - 1, x)
See also: expint, @@sym/ei.
Package: symbolic