@sym
: expint (x) ¶@sym
: expint (n, x) ¶Symbolic generalized exponential integral (expint) function.
Integral definition:
syms x E1 = expint (x) ⇒ E1 = (sym) E₁(x) rewrite (E1, 'Integral') ⇒ (sym) ∞ ⌠ ⎮ -t⋅x ⎮ ℯ ⎮ ───── dt ⎮ t ⌡ 1
This can also be written (using the substitution u = t⋅x
) as:
∞ ⌠ ⎮ -u ⎮ ℯ ⎮ ─── du ⎮ u ⌡ x
With two arguments, we have:
E2 = expint(2, x) ⇒ E2 = (sym) E₂(x)
In general:
syms n x En = expint(n, x) ⇒ En = (sym) Eₙ(x) rewrite (En, 'Integral') ⇒ (sym) ∞ ⌠ ⎮ -n -t⋅x ⎮ t ⋅ℯ dt ⌡ 1
Other example:
syms n x En = expint(n, x); diff(En, x) ⇒ (sym) -expint(n - 1, x)
See also: expint, @sym/ei.
Package: symbolic