Method on @sym: ezplot (f)
Method on @sym: ezplot (f1, f2)
Method on @sym: ezplot (f, dom)
Method on @sym: ezplot (f1, f2, dom)
Method on @sym: ezplot (…, N)

Simple plotting of symbolic expressions.

Example parametric plot of a Lissajous Curve:

syms t
x = cos(3*t), y = sin(2*t)
  ⇒ x = (sym) cos(3⋅t)
  ⇒ y = (sym) sin(2⋅t)

ezplot(x, y)                                 % doctest: +SKIP

Example plotting the zero level curve of a function of two variables:

syms x y
f = x^2 + y^2 - 1;
ezplot (f)                                   % doctest: +SKIP

Here the curve is defined implicitly by f(x, y) == 0, but we do not enter the == 0 part.

See help for the (non-symbolic) ezplot, which this routine calls after trying to convert sym inputs to anonymous functions.

Using sym arguments for dom and n can lead to ambiguity where OctSymPy cannot tell if you are specifying n or f2. For example:

syms t
f = sin(t);
N = sym(50);

% parametric plot of f(t), N(t)
ezplot(f, N)                                 % doctest: +SKIP

% plot f vs t using 50 pts
ezplot(f, double(N))                         % doctest: +SKIP

The solution, as shown in the example, is to convert the sym to a double.

See also: ezplot, @sym/ezplot3, @sym/ezsurf, @sym/fplot, @sym/function_handle.

Package: symbolic