@sym
: fourier (f, x, w) ¶@sym
: fourier (f) ¶@sym
: fourier (f, w) ¶Symbolic Fourier transform.
The Fourier transform of a function f of x is a function FF of w defined by the integral below.
syms f(x) w FF(w) = rewrite(fourier(f), 'Integral') ⇒ FF(w) = (symfun) ∞ ⌠ ⎮ -ⅈ⋅w⋅x ⎮ f(x)⋅ℯ dx ⌡ -∞
Example:
syms x f = exp(-abs(x)); fourier(f) ⇒ (sym) 2 ────── 2 w + 1
Note fourier
and ifourier
implement the non-unitary,
angular frequency convention for L^2 functions and distributions.
*WARNING*: As of SymPy 0.7.6 (June 2015), there are many problems with (inverse) Fourier transforms of non-smooth functions, even very simple ones. Use at your own risk, or even better: help us fix SymPy.
See also: @sym/ifourier.
Package: symbolic