@sym: fourier (f, x, w) ¶@sym: fourier (f) ¶@sym: fourier (f, w) ¶Symbolic Fourier transform.
The Fourier transform of a function f of x is a function FF of w defined by the integral below.
syms f(x) w
FF(w) = rewrite(fourier(f), 'Integral')
⇒ FF(w) = (symfun)
∞
⌠
⎮ -ⅈ⋅w⋅x
⎮ f(x)⋅ℯ dx
⌡
-∞
Example:
syms x
f = exp(-abs(x));
fourier(f)
⇒ (sym)
2
──────
2
w + 1
Note fourier and ifourier implement the non-unitary,
angular frequency convention for L^2 functions and distributions.
*WARNING*: As of SymPy 0.7.6 (June 2015), there are many problems with (inverse) Fourier transforms of non-smooth functions, even very simple ones. Use at your own risk, or even better: help us fix SymPy.
See also: @@sym/ifourier.
Package: symbolic