@sym
: harmonic (x) ¶Symbolic harmonic function.
For integers, the harmonic function can be defined as:
syms n integer y = harmonic (n) ⇒ y = (sym) harmonic(n) rewrite (y, 'Sum') ⇒ (sym) n ____ ╲ ╲ ╲ 1 ╱ ─ ╱ k ╱ ‾‾‾‾ k = 1
Examples:
harmonic (sym(1:7)) ⇒ (sym 1×7 matrix) ⎡ 25 137 49 363⎤ ⎢1 3/2 11/6 ── ─── ── ───⎥ ⎣ 12 60 20 140⎦
harmonic (sym(120)) ⇒ ans = (sym) 18661952910524692834612799443020757786224277983797 ────────────────────────────────────────────────── 3475956553913558034594585593659201286533187398464 double (ans) ⇒ ans = 5.3689
It is also defined for non-integers, for example:
y = harmonic (sym(1)/3) ⇒ y = (sym) harmonic(1/3) vpa (y) ⇒ (sym) 0.44518188488072653761009301579513
y = harmonic (sym(i)) ⇒ y = (sym) harmonic(ⅈ) vpa (y) ⇒ (sym) 0.67186598552400983787839057280431 + 1.07667404746858117413405079475⋅ⅈ
An example establishing an identity:
syms x A = psi (x) + eulergamma () ⇒ A = (sym) polygamma(0, x) + γ rewrite (A, 'harmonic') ⇒ ans = (sym) harmonic(x - 1)
See also: bernoulli.
Package: symbolic