@sym
: hessian (f) ¶@sym
: hessian (f, x) ¶Symbolic Hessian matrix of symbolic scalar expression.
The Hessian of a scalar expression f is the matrix consisting of second derivatives:
syms f(x, y, z) hessian(f) ⇒ (sym 3×3 matrix) ⎡ 2 2 2 ⎤ ⎢ ∂ ∂ ∂ ⎥ ⎢ ───(f(x, y, z)) ─────(f(x, y, z)) ─────(f(x, y, z))⎥ ⎢ 2 ∂y ∂x ∂z ∂x ⎥ ⎢ ∂x ⎥ ⎢ ⎥ ⎢ 2 2 2 ⎥ ⎢ ∂ ∂ ∂ ⎥ ⎢─────(f(x, y, z)) ───(f(x, y, z)) ─────(f(x, y, z))⎥ ⎢∂y ∂x 2 ∂z ∂y ⎥ ⎢ ∂y ⎥ ⎢ ⎥ ⎢ 2 2 2 ⎥ ⎢ ∂ ∂ ∂ ⎥ ⎢─────(f(x, y, z)) ─────(f(x, y, z)) ───(f(x, y, z)) ⎥ ⎢∂z ∂x ∂z ∂y 2 ⎥ ⎣ ∂z ⎦
x can be a scalar, vector or cell list. If omitted,
it is determined using symvar
.
Example:
f = x*y; hessian(f) ⇒ (sym 2×2 matrix) ⎡0 1⎤ ⎢ ⎥ ⎣1 0⎦
See also: @sym/jacobian, @sym/divergence, @sym/gradient, @sym/curl, @sym/laplacian.
Package: symbolic