@sym
: hypergeom (a, b, z) ¶Symbolic generalized hypergeometric function.
Example:
syms z hypergeom ([1, 2, 3], [4, 5], z) ⇒ (sym) ┌─ ⎛1, 2, 3 │ ⎞ ├─ ⎜ │ z⎟ 3╵ 2 ⎝ 4, 5 │ ⎠
Simplifying can be useful to express a hypergeometric function in terms of more elementary functions:
simplify (hypergeom ([1 1], 2, -z)) ⇒ (sym) log(z + 1) ────────── z
The function can be ‘vectorized’ over z:
syms a b c hypergeom([a b], c, [z 1/z 8]) ⇒ (sym 1×3 matrix) ⎡ ┌─ ⎛a, b │ ⎞ ┌─ ⎛a, b │ 1⎞ ┌─ ⎛a, b │ ⎞⎤ ⎢ ├─ ⎜ │ z⎟ ├─ ⎜ │ ─⎟ ├─ ⎜ │ 8⎟⎥ ⎣2╵ 1 ⎝ c │ ⎠ 2╵ 1 ⎝ c │ z⎠ 2╵ 1 ⎝ c │ ⎠⎦
The hypergeometric function can be differentiated, for example:
w = hypergeom([a b], c, z) ⇒ w = (sym) ┌─ ⎛a, b │ ⎞ ├─ ⎜ │ z⎟ 2╵ 1 ⎝ c │ ⎠ diff(w, z) ⇒ (sym) ┌─ ⎛a + 1, b + 1 │ ⎞ a⋅b⋅ ├─ ⎜ │ z⎟ 2╵ 1 ⎝ c + 1 │ ⎠ ─────────────────────────── c
Package: symbolic