@sym: hypergeom (a, b, z) ¶Symbolic generalized hypergeometric function.
Example:
syms z
hypergeom ([1, 2, 3], [4, 5], z)
⇒ (sym)
┌─ ⎛1, 2, 3 │ ⎞
├─ ⎜ │ z⎟
3╵ 2 ⎝ 4, 5 │ ⎠
Simplifying can be useful to express a hypergeometric function in terms of more elementary functions:
simplify (hypergeom ([1 1], 2, -z))
⇒ (sym)
log(z + 1)
──────────
z
The function can be ‘vectorized’ over z:
syms a b c
hypergeom([a b], c, [z 1/z 8])
⇒ (sym 1×3 matrix)
⎡ ┌─ ⎛a, b │ ⎞ ┌─ ⎛a, b │ 1⎞ ┌─ ⎛a, b │ ⎞⎤
⎢ ├─ ⎜ │ z⎟ ├─ ⎜ │ ─⎟ ├─ ⎜ │ 8⎟⎥
⎣2╵ 1 ⎝ c │ ⎠ 2╵ 1 ⎝ c │ z⎠ 2╵ 1 ⎝ c │ ⎠⎦
The hypergeometric function can be differentiated, for example:
w = hypergeom([a b], c, z)
⇒ w = (sym)
┌─ ⎛a, b │ ⎞
├─ ⎜ │ z⎟
2╵ 1 ⎝ c │ ⎠
diff(w, z)
⇒ (sym)
┌─ ⎛a + 1, b + 1 │ ⎞
a⋅b⋅ ├─ ⎜ │ z⎟
2╵ 1 ⎝ c + 1 │ ⎠
───────────────────────────
c
Package: symbolic