@sym
: ifourier (G, w, x) ¶@sym
: ifourier (G) ¶@sym
: ifourier (G, x) ¶Symbolic inverse Fourier transform.
The inverse Fourier transform of a function G of w is a function f of x defined by the integral below.
syms G(w) x f(x) = rewrite(ifourier(G), 'Integral') ⇒ f(x) = (symfun) ∞ ⌠ ⎮ ⅈ⋅w⋅x ⎮ G(w)⋅ℯ dw ⌡ -∞ ───────────────── 2⋅π
Example:
syms k F = sqrt(sym(pi))*exp(-k^2/4); ifourier(F) ⇒ (sym) 2 -x ℯ
F = 2*sym(pi)*dirac(k); ifourier(F) ⇒ ans = (sym) 1
Note fourier
and ifourier
implement the non-unitary,
angular frequency convention for L^2 functions and distributions.
*WARNING*: As of SymPy 0.7.6 (June 2015), there are many problems with (inverse) Fourier transforms of non-smooth functions, even very simple ones. Use at your own risk, or even better: help us fix SymPy.
See also: @sym/fourier.
Package: symbolic