@sym: ifourier (G, w, x) ¶@sym: ifourier (G) ¶@sym: ifourier (G, x) ¶Symbolic inverse Fourier transform.
The inverse Fourier transform of a function G of w is a function f of x defined by the integral below.
syms G(w) x
f(x) = rewrite(ifourier(G), 'Integral')
⇒ f(x) = (symfun)
∞
⌠
⎮ ⅈ⋅w⋅x
⎮ G(w)⋅ℯ dw
⌡
-∞
─────────────────
2⋅π
Example:
syms k
F = sqrt(sym(pi))*exp(-k^2/4);
ifourier(F)
⇒ (sym)
2
-x
ℯ
F = 2*sym(pi)*dirac(k); ifourier(F) ⇒ ans = (sym) 1
Note fourier and ifourier implement the non-unitary,
angular frequency convention for L^2 functions and distributions.
*WARNING*: As of SymPy 0.7.6 (June 2015), there are many problems with (inverse) Fourier transforms of non-smooth functions, even very simple ones. Use at your own risk, or even better: help us fix SymPy.
See also: @@sym/fourier.
Package: symbolic