@sym: ilaplace (G, s, t) ¶@sym: ilaplace (G) ¶@sym: ilaplace (G, t) ¶Inverse Laplace transform.
The inverse Laplace transform of a function G of s is a function f of t defined by the integral below.
syms g(s) t
f(t) = rewrite(ilaplace(g), 'Integral')
⇒ f(t) = (symfun)
c + ∞⋅ⅈ
⌠
⎮ s⋅t
-ⅈ⋅ ⎮ g(s)⋅ℯ ds
⌡
c - ∞⋅ⅈ
────────────────────────
2⋅π
(This expression is usually written simply as the integral divided by
2⋅π⋅ⅈ.)
Example:
syms s t F = 1/s^2; ilaplace(F, s, t) ⇒ (sym) t⋅θ(t)
To avoid Heaviside, try:
syms t positive ilaplace(1/s^2, s, t) ⇒ (sym) t
By default the output is a function of t (or x if the
inverse transform happens to be with respect to t). This can
be overridden by specifying t. For example:
syms s syms t x positive ilaplace(1/s^2) ⇒ (sym) t ilaplace(1/t^2) ⇒ (sym) x ilaplace(1/s^2, x) ⇒ (sym) x
The independent variable of the input can be specified by s;
if omitted it defaults a symbol named s, or see ‘@sym/symvar’
if no such symbol is found.
See also: @@sym/laplace.
Package: symbolic