@sym
: ilaplace (G, s, t) ¶@sym
: ilaplace (G) ¶@sym
: ilaplace (G, t) ¶Inverse Laplace transform.
The inverse Laplace transform of a function G of s is a function f of t defined by the integral below.
syms g(s) t f(t) = rewrite(ilaplace(g), 'Integral') ⇒ f(t) = (symfun) c + ∞⋅ⅈ ⌠ ⎮ s⋅t -ⅈ⋅ ⎮ g(s)⋅ℯ ds ⌡ c - ∞⋅ⅈ ──────────────────────── 2⋅π
(This expression is usually written simply as the integral divided by
2⋅π⋅ⅈ
.)
Example:
syms s t F = 1/s^2; ilaplace(F, s, t) ⇒ (sym) t⋅θ(t)
To avoid Heaviside
, try:
syms t positive ilaplace(1/s^2, s, t) ⇒ (sym) t
By default the output is a function of t
(or x
if the
inverse transform happens to be with respect to t
). This can
be overridden by specifying t. For example:
syms s syms t x positive ilaplace(1/s^2) ⇒ (sym) t ilaplace(1/t^2) ⇒ (sym) x ilaplace(1/s^2, x) ⇒ (sym) x
The independent variable of the input can be specified by s;
if omitted it defaults a symbol named s
, or see ‘@sym/symvar’
if no such symbol is found.
See also: @sym/laplace.
Package: symbolic