@sym
: laguerreL (n, x) ¶@sym
: laguerreL (n, alpha, x) ¶Symbolic Laguerre polynomials and associated Laguerre polynomials.
Example:
syms x n laguerreL(5, x) ⇒ ans = (sym) 5 4 3 x 5⋅x 5⋅x 2 - ─── + ──── - ──── + 5⋅x - 5⋅x + 1 120 24 3 laguerreL(n, x) ⇒ ans = (sym) laguerre(n, x)
When alpha is nonzero, we get generalized (associated) Laguerre polynomials:
laguerreL(n, 1, x) ⇒ ans = (sym) assoc_laguerre(n, 1, x)
The polynomials can be manipulated symbolically, for example:
L = laguerreL(n, x); diff(L, x) ⇒ ans = (sym) -assoc_laguerre(n - 1, 1, x)
Laguerre Functions have non-positive integer N, such as
syms x N = -3; y = laguerreL(N, x) ⇒ y = (sym) ⎛ 2 ⎞ ⎜x ⎟ x ⎜── + 2⋅x + 1⎟⋅ℯ ⎝2 ⎠
These satisfy Laguerre’s differential equation:
x*diff(y, x, x) + (1 - x)*diff(y, x) + N*y == 0 ⇒ (sym) ... simplify(ans) ⇒ (sym) True
Note: the Generalized Laguerre Function is not implemented.
See also: laguerreL, @sym/chebychevT, @sym/chebychevU.
Package: symbolic