@sym: laplace (f, t, s) ¶@sym: laplace (f) ¶@sym: laplace (f, s) ¶Laplace transform.
The Laplace transform of a function f of t is a function G of s defined by the integral below.
syms f(t) s
G(s) = rewrite(laplace(f), 'Integral')
⇒ G(s) = (symfun)
∞
⌠
⎮ -s⋅t
⎮ f(t)⋅ℯ dt
⌡
0
Example:
syms t
f = t^2;
laplace(f)
⇒ (sym)
2
──
3
s
By default the output is a function of s (or z if the Laplace
transform happens to be with respect to s). This can be overridden
by specifying s. For example:
syms t s z
laplace(exp(t))
⇒ (sym)
1
─────
s - 1
laplace(exp(s))
⇒ (sym)
1
─────
z - 1
laplace(exp(t), z)
⇒ (sym)
1
─────
z - 1
If not specified by t, the independent variable is chosen by
looking for a symbol named t. If no such symbol is found,
see ‘@sym/symvar’ is used, which chooses a variable close to x:
syms a y
laplace (a*exp (y))
⇒ (sym)
a
─────
s - 1
See also: @@sym/ilaplace.
Package: symbolic