@sym
: laplace (f, t, s) ¶@sym
: laplace (f) ¶@sym
: laplace (f, s) ¶Laplace transform.
The Laplace transform of a function f of t is a function G of s defined by the integral below.
syms f(t) s G(s) = rewrite(laplace(f), 'Integral') ⇒ G(s) = (symfun) ∞ ⌠ ⎮ -s⋅t ⎮ f(t)⋅ℯ dt ⌡ 0
Example:
syms t f = t^2; laplace(f) ⇒ (sym) 2 ── 3 s
By default the output is a function of s
(or z
if the Laplace
transform happens to be with respect to s
). This can be overridden
by specifying s. For example:
syms t s z laplace(exp(t)) ⇒ (sym) 1 ───── s - 1 laplace(exp(s)) ⇒ (sym) 1 ───── z - 1 laplace(exp(t), z) ⇒ (sym) 1 ───── z - 1
If not specified by t, the independent variable is chosen by
looking for a symbol named t
. If no such symbol is found,
see ‘@sym/symvar’ is used, which chooses a variable close to x
:
syms a y laplace (a*exp (y)) ⇒ (sym) a ───── s - 1
See also: @sym/ilaplace.
Package: symbolic