@sym
: [N, D] =
numden (f)
¶Extract numerator and denominator of a symbolic expression.
Examples:
f = sym(5)/6; [N, D] = numden (f) ⇒ N = (sym) 5 ⇒ D = (sym) 6
syms x f = (x^2+2*x-1)/(2*x^3+9*x^2+6*x+3) ⇒ f = (sym) 2 x + 2⋅x - 1 ───────────────────── 3 2 2⋅x + 9⋅x + 6⋅x + 3 [N, D] = numden (f) ⇒ N = (sym) 2 x + 2⋅x - 1 ⇒ D = (sym) 3 2 2⋅x + 9⋅x + 6⋅x + 3
f can be a matrix, for example:
f = [1/x exp(x) exp(-x)]; [N, D] = numden (f) ⇒ N = (sym 1×3 matrix) ⎡ x ⎤ ⎣1 ℯ 1⎦ ⇒ D = (sym 1×3 matrix) ⎡ x⎤ ⎣x 1 ℯ ⎦
See also: @sym/partfrac, @sym/children, @sym/coeffs, @sym/children, @sym/lhs, @sym/rhs.
Package: symbolic