@sym: [N, D] = numden (f) ¶Extract numerator and denominator of a symbolic expression.
Examples:
f = sym(5)/6; [N, D] = numden (f) ⇒ N = (sym) 5 ⇒ D = (sym) 6
syms x
f = (x^2+2*x-1)/(2*x^3+9*x^2+6*x+3)
⇒ f = (sym)
2
x + 2⋅x - 1
─────────────────────
3 2
2⋅x + 9⋅x + 6⋅x + 3
[N, D] = numden (f)
⇒ N = (sym)
2
x + 2⋅x - 1
⇒ D = (sym)
3 2
2⋅x + 9⋅x + 6⋅x + 3
f can be a matrix, for example:
f = [1/x exp(x) exp(-x)];
[N, D] = numden (f)
⇒ N = (sym 1×3 matrix)
⎡ x ⎤
⎣1 ℯ 1⎦
⇒ D = (sym 1×3 matrix)
⎡ x⎤
⎣x 1 ℯ ⎦
See also: @@sym/partfrac, @@sym/children, @@sym/coeffs, @@sym/children, @@sym/lhs, @@sym/rhs.
Package: symbolic