@sym
: rewrite (f, how) ¶Rewrite a symbolic expression.
Attempts to rewrite an expression f in terms of functions indicated by the case-sensitive string how.
Examples using trigonometry:
syms x rewrite(exp(x), 'sin') ⇒ ans = (sym) sinh(x) + cosh(x) rewrite(sin(x), 'exp') ⇒ ans = (sym) ⎛ ⅈ⋅x -ⅈ⋅x⎞ -ⅈ⋅⎝ℯ - ℯ ⎠ ────────────────── 2
Often sincos
is more useful than sin
or cos
:
rewrite(tan(x), 'sin') ⇒ (sym) 2 2⋅sin (x) ───────── sin(2⋅x) rewrite(tan(x), 'sincos') ⇒ (sym) sin(x) ────── cos(x)
The argument f can be a matrix:
rewrite([exp(x) cos(x) asin(x)], 'log') ⇒ ans = (sym 1×3 matrix) ⎡ ⎛ ________⎞⎤ ⎢ x ⎜ ╱ 2 ⎟⎥ ⎣ℯ cos(x) -ⅈ⋅log⎝ⅈ⋅x + ╲╱ 1 - x ⎠⎦
(and note that some elements of f might be unchanged.)
Example using integrals:
syms f(t) s G = laplace(f) ⇒ G = (sym) LaplaceTransform(f(t), t, s) rewrite(G, 'Integral') ⇒ ans = (sym) ∞ ⌠ ⎮ -s⋅t ⎮ f(t)⋅ℯ dt ⌡ 0
Note the case-sensitivity of how:
use Integral
not integral
.
Further examples:
syms n r rewrite(factorial(n), 'gamma') ⇒ ans = (sym) Γ(n + 1)
nCr = nchoosek(n, r) ⇒ nCr = (sym) ⎛n⎞ ⎜ ⎟ ⎝r⎠ rewrite(nCr, 'factorial') ⇒ ans = (sym) n! ─────────── r!⋅(n - r)!
See also: @sym/simplify, @sym/expand, @sym/factor.
Package: symbolic