@sym
: sinc (x) ¶Symbolic normalized sinc function.
The normalized sinc function is defined by
syms x rewrite (sinc (x), 'sin') ⇒ (sym) ⎧sin(π⋅x) ⎪──────── for π⋅x ≠ 0 ⎨ π⋅x ⎪ ⎩ 1 otherwise
Caution, the notation sinc
is also commonly used to represent
the unnormalized sinc function
sin(x)/x
.
Further examples:
rewrite (sin (x)/x, 'sinc') ⇒ ans = (sym) ⎛x⎞ sinc⎜─⎟ ⎝π⎠
rewrite (sin (pi*x)/(pi*x), 'sinc') ⇒ ans = (sym) sinc(x)
syms x nonzero simplify (diff (sinc (x))) ⇒ ans = (sym) cos(π⋅x) sin(π⋅x) ──────── - ──────── x 2 π⋅x
See also: sinc.
Package: symbolic