@sym: sinc (x) ¶Symbolic normalized sinc function.
The normalized sinc function is defined by
syms x
rewrite (sinc (x), 'sin')
⇒ (sym)
⎧sin(π⋅x)
⎪──────── for π⋅x ≠ 0
⎨ π⋅x
⎪
⎩ 1 otherwise
Caution, the notation sinc is also commonly used to represent
the unnormalized sinc function
sin(x)/x.
Further examples:
rewrite (sin (x)/x, 'sinc')
⇒ ans = (sym)
⎛x⎞
sinc⎜─⎟
⎝π⎠
rewrite (sin (pi*x)/(pi*x), 'sinc') ⇒ ans = (sym) sinc(x)
syms x nonzero
simplify (diff (sinc (x)))
⇒ ans = (sym)
cos(π⋅x) sin(π⋅x)
──────── - ────────
x 2
π⋅x
See also: sinc.
Package: symbolic