@sym
: S =
svd (A)
¶@sym
: [U, S, V] =
svd (A)
¶Symbolic singular value decomposition.
The SVD: U*S*V’ = A
Singular values example:
A = sym([1 0; 3 0]); svd(A) ⇒ (sym 2×1 matrix) ⎡√10⎤ ⎢ ⎥ ⎣ 0 ⎦
FIXME: currently only singular values, not singular vectors. Should add full SVD to sympy.
See also: svd, @sym/eig.
Package: symbolic