@sym: S = svd (A) ¶@sym: [U, S, V] = svd (A) ¶Symbolic singular value decomposition.
The SVD: U*S*V’ = A
Singular values example:
A = sym([1 0; 3 0]);
svd(A)
⇒ (sym 2×1 matrix)
⎡√10⎤
⎢ ⎥
⎣ 0 ⎦
FIXME: currently only singular values, not singular vectors. Should add full SVD to sympy.
See also: svd, @@sym/eig.
Package: symbolic