@sym: trace (A) ¶Trace of symbolic matrix.
Example:
syms x
A = [1 2 x; 3 sym(pi) 4; 13 5 2*x]
⇒ A = (sym 3×3 matrix)
⎡1 2 x ⎤
⎢ ⎥
⎢3 π 4 ⎥
⎢ ⎥
⎣13 5 2⋅x⎦
trace(A)
⇒ ans = (sym) 2⋅x + 1 + π
As an example, we can check that the trace of the product is not the product of the traces:
A = sym([1 2; 3 4]); B = sym([pi 3; 1 8]); trace(A*B) ⇒ ans = (sym) π + 43 trace(A) * trace(B) ⇒ ans = (sym) 5⋅π + 40
However, such a property does hold if we use the Kronecker tensor product (see ‘@sym/trace’):
kron(A, B)
⇒ ans = (sym 4×4 matrix)
⎡ π 3 2⋅π 6 ⎤
⎢ ⎥
⎢ 1 8 2 16⎥
⎢ ⎥
⎢3⋅π 9 4⋅π 12⎥
⎢ ⎥
⎣ 3 24 4 32⎦
trace(kron(A, B))
⇒ ans = (sym) 5⋅π + 40
trace(A) * trace(B)
⇒ ans = (sym) 5⋅π + 40
See also: @@sym/det.
Package: symbolic