@sym
: trace (A) ¶Trace of symbolic matrix.
Example:
syms x A = [1 2 x; 3 sym(pi) 4; 13 5 2*x] ⇒ A = (sym 3×3 matrix) ⎡1 2 x ⎤ ⎢ ⎥ ⎢3 π 4 ⎥ ⎢ ⎥ ⎣13 5 2⋅x⎦ trace(A) ⇒ ans = (sym) 2⋅x + 1 + π
As an example, we can check that the trace of the product is not the product of the traces:
A = sym([1 2; 3 4]); B = sym([pi 3; 1 8]); trace(A*B) ⇒ ans = (sym) π + 43 trace(A) * trace(B) ⇒ ans = (sym) 5⋅π + 40
However, such a property does hold if we use the Kronecker tensor product (see ‘@sym/trace’):
kron(A, B) ⇒ ans = (sym 4×4 matrix) ⎡ π 3 2⋅π 6 ⎤ ⎢ ⎥ ⎢ 1 8 2 16⎥ ⎢ ⎥ ⎢3⋅π 9 4⋅π 12⎥ ⎢ ⎥ ⎣ 3 24 4 32⎦ trace(kron(A, B)) ⇒ ans = (sym) 5⋅π + 40 trace(A) * trace(B) ⇒ ans = (sym) 5⋅π + 40
See also: @sym/det.
Package: symbolic