@symfun: diff (f) ¶@symfun: diff (f, x) ¶@symfun: diff (f, x, x, …) ¶@symfun: diff (f, x, n) ¶@symfun: diff (f, x, y) ¶@symfun: diff (f, x, x, y, y, …) ¶@symfun: diff (f, x, n, y, m, …) ¶Symbolic differentiation of symbolic functions.
Mostly the same as @sym/diff (and indeed it
calls that code) but returns a symfun.
The derivative is itself a symfun so you can evaluate at a point like:
syms u(x)
up = diff(u) % u'(x)
⇒ up(x) = (symfun)
d
──(u(x))
dx
up(2) % u'(2)
⇒ ans = (sym)
⎛d ⎞│
⎜──(u(x))⎟│
⎝dx ⎠│x=2
On GNU Octave, a further shortcut is possible:
syms u(x)
diff(u)(2)
⇒ ans = (sym)
⎛d ⎞│
⎜──(u(x))⎟│
⎝dx ⎠│x=2
syms f(x, y)
diff(f, x, y, y)(3, 2) % a third partial eval at (3, 2)
⇒ ans = (sym)
⎛ 3 ⎞│
⎜ ∂ ⎟│
⎜──────(f(x, y))⎟│
⎜ 2 ⎟│
⎝∂y ∂x ⎠│x=3, y=2
See also: @@sym/diff, @@symfun/int.
Package: symbolic