Numerical solution of a symbolic equation.
Variable-precision numerical solution of the equation e for variable x using initial guess of x0.
Example:
syms x eqn = exp(x) == x + 2; vpasolve(eqn, x, 0.1) ⇒ (sym) 1.1461932206205825852370610285214
Systems of equations are supported:
syms x y eqns = [y*exp(x) == 16; x^5 == x + x*y^2] ⇒ eqns = (sym 2×1 matrix) ⎡ x ⎤ ⎢ y⋅ℯ = 16 ⎥ ⎢ ⎥ ⎢ 5 2 ⎥ ⎣x = x⋅y + x⎦
vpasolve(eqns, [x; y], [1; 1]) ⇒ (sym 2×1 matrix) ⎡1.7324062670465659633407456995303⎤ ⎢ ⎥ ⎣2.8297332667835974266598942031498⎦
Complex roots can be found but you must provide a complex initial guess:
vpasolve(x^2 + 2 == 0, x, 1i) ⇒ (sym) 1.4142135623730950488016887242097⋅ⅈ
See also: vpa.
Package: symbolic