Numerical solution of a symbolic equation.
Variable-precision numerical solution of the equation e for variable x using initial guess of x0.
Example:
syms x eqn = exp(x) == x + 2; vpasolve(eqn, x, 0.1) ⇒ (sym) 1.1461932206205825852370610285214
Systems of equations are supported:
syms x y
eqns = [y*exp(x) == 16; x^5 == x + x*y^2]
⇒ eqns = (sym 2×1 matrix)
⎡ x ⎤
⎢ y⋅ℯ = 16 ⎥
⎢ ⎥
⎢ 5 2 ⎥
⎣x = x⋅y + x⎦
vpasolve(eqns, [x; y], [1; 1])
⇒ (sym 2×1 matrix)
⎡1.7324062670465659633407456995303⎤
⎢ ⎥
⎣2.8297332667835974266598942031498⎦
Complex roots can be found but you must provide a complex initial guess:
vpasolve(x^2 + 2 == 0, x, 1i) ⇒ (sym) 1.4142135623730950488016887242097⋅ⅈ
See also: vpa.
Package: symbolic